Sparse bounds for maximal monomial oscillatory Hilbert transforms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Bounds for the Bilinear Hilbert Transforms

It is shown that the bilinear Hilbert transforms Hα,β(f, g)(x) = p.v. ∫ R f(x− αt)g(x− βt) dt t map Lp1(R) × Lp2(R) → Lp(R) uniformly in the real parameters α, β when 2 < p1, p2 < ∞ and 1 < p = p1p2 p1+p2 < 2. Combining this result with the main result in [9], we deduce that the operators H1,α map L2(R)×L∞(R) → L2(R) uniformly in the real parameter α ∈ [0, 1]. This completes a program initiated...

متن کامل

Bilinear Hilbert Transforms along Curves I. the Monomial Case

We establish an L2×L2 to L estimate for the bilinear Hilbert transform along a curve defined by a monomial. Our proof is closely related to multilinear oscillatory integrals.

متن کامل

Endpoint Bounds for an Analytic Family of Hilbert Transforms

In R2, we consider an analytic family of operators Hz , z ∈ C, whose convolution kernel is obtained by taking −z − 1 derivatives of arclength measure on the parabola (t, t2) in a homogeneous way, defined in such a way so that H−1 be the standard parabolic Hilbert transform. For a fixed z, we study the set of p for which Hz is bounded on Lp(R2) and for the critical z that captures the degree of ...

متن کامل

Uniform Bounds for the Bilinear Hilbert Transforms, I

It is shown that the bilinear Hilbert transforms Hα,β(f, g)(x) = p.v. Z R f(x− αt)g(x− βt) dt t map L1(R)×L2(R)→ L(R) uniformly in the real parameters α, β when 2 < p1, p2 <∞ and 1 < p = p1p2 p1+p2 < 2. Combining this result with the main result in [9], it follows that the operators H1,α map L (R) × L∞(R) → L(R) uniformly in the real parameter α ∈ [0, 1], as conjectured by A. Calderón.

متن کامل

Uniform Bounds for the Bilinear Hilbert Transforms, Ii

We continue the investigation initiated in [8] of uniform L bounds for the family of bilinear Hilbert transforms Hα,β(f, g)(x) = p.v. ∫ R f(x − αt)g(x − βt) dt t . In this work we show that Hα,β map L1(R) × L2(R) into L(R) uniformly in the real parameters α, β satisfying | β − 1| ≥ c > 0 when 1 < p1, p2 < 2 and 2 3 < p = p1p2 p1+p2 < ∞. As a corollary we obtain L × L∞ → L uniform bounds in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2018

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm8699-7-2017